The Insulin Connection
8:30 A.M.– 11:30 A.M. Morning Session

INSULIN: THE BRAIN-BODY CONNECTION

Insulin Resistance (IR)
• What does it mean to be insulin resistant?
• The molecular and physiologic basis of IR: pre-receptor, receptor, postreceptor defects.
• Obesity and inactivity - powerful modulators of IR.
• Role of prenatal programming – setting the stage for IR in the womb.

The Brain – The Command Center
• The insulin-brain connection: a key regulator of glucose and energy homeostasis.
• Understanding how insulin signaling in the CNS effects the development of obesity and metabolic problems.
• Leptin and insulin: connecting central imbalances with body fat alterations.

Diagnosis: Insulin Resistance Syndrome (IRS) vs. Metabolic Syndrome
• The connection between insulin production and brain cell regulation. Could Alzheimer’s be a form of diabetes?

Obesity and Insulin Resistance
• The fat cell - a new endocrine organ.
• Fat cell hormones: metabolic controllers of insulin resistance (e.g. adiponectin and retinol binding protein 4).
• Visceral vs. subcutaneous fat. Understanding ectopic fat storage. Lipotoxicity - a major perpetuator of IR.
• Abdominal fat and chronic inflammation – a major culprit underlying IR.

THE CLINICAL IMPACT OF INSULIN RESISTANCE
• Type 2 Diabetes: Current AACE and ADA guidelines for diagnosis and management.
• Cardiometabolic Risk: Hyperinsulinemia and dyslipidemia, hypertension, clotting, and endothelial dysfunction.
• Cancer: Relationship between IR and malignancy. A look at the mechanisms of action.
• Cognitive Impairment and Alzheimer’s Disease
 - Insulin and normal brain function. Link between IR and brain inflammation and β-amyloid accumulation.
• Polycystic Ovary Syndrome: the most common metabolic abnormality in young women today.
• Fatty Liver Disease NAFLD: the link between IR and fatty liver.
• Obstructive Sleep Apnea Syndrome: Intermittent hypoxia and whole-body insulin resistance.

11:45 A.M.– 2:45 P.M. Afternoon Session

IMPROVING INSULIN SENSITIVITY- REDUCING CHRONIC DISEASE

Weight Loss
• Physiological barriers – metabolic, neuroendocrine, autonomic and behavioral changes that favor weight regain.
• The 5% effect - reducing insulin levels and improve insulin sensitivity.
• Prevention and management of childhood obesity: AAP recommendations.

Diet
• What is the optimal diet for improving insulin resistance?
• Effects of macronutrient content (CHO, fat, protein) and specific dietary components (saturated and trans fatty acids, fiber, glycemic load, high fructose corn syrup, alcohol).
• The anti-inflammatory diet. Diet modification to reduce postprandial dysmetabolism.

Physical Activity
• Improvement in insulin sensitivity even without weight loss. Mechanisms.
• How much and what type of exercise do we need?

Sleep Hygiene and Stress Management
• How sleep patterns effect glucose and insulin levels during the day and night.
• Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels.

Pharmacologic Interventions
• Insulin sensitizing medications: metformin and thiazolidinediones. Glitazones and heart failure?
• Anti-obesity therapies that target appetite, energy storage and energy utilization.
• Existing therapies and potential strategies on the horizon (CB-1 antagonists, NPY antagonists, etc.).
• Overcoming central leptin resistance: intranasal leptin and leptin receptor agonists.

Surgery/Bariatric Approaches
• Mechanisms for weight loss. Benefits vs. risks.
• Long-Term effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee.
• Acupuncture as an adjunct to exercise based physiotherapy for osteoarthritis of the knee: A look at the research.
• Effects of obesity on joint biomechanics. Dietary recommendations for joint preservation.
Course Objectives

• Identify the physiological actions of insulin on the body and in the brain.
• Discuss the clinical impact of insulin resistance.
• Identify pharmacologic interventions for treating insulin resistance.
• Design a lifestyle intervention plan that can effectively improve insulin sensitivity and utilization.